
A novel Predictive Model for Determining

Filtration Volume vs. Time for Nano Compounds

with Multi-modal Particle Size Distribution

Modesto Torres

Electrical and Computer Engineering Department

US ARMY ARDEC, Picatinny Arsenal, New Jersey, USA

Stevens Institute of Technology

Hoboken, New Jersey, USA

Abstract— A novel predictive model for accurately determining

filtrate mass correlation with respect with the input variables.

The solution is based on training a neural network consisting of

ten hidden layers using the Levenberg-Marcquard back

propagation algorithm to recognize the correlation between the

input variables, including the filtration time, and the filtrate

mass.

The main hurdle found was how to exactly organize the data in

order to get the best Mean Square Error (MSE) and correlation

(R) values to ensure a good prediction and a strong relationship

between the input variables and the output variable which in this

case is the Filtrate Mass.

This Model is proven to work with an estimated error of about

4.02% and 4.9% with a total sample size of 4974. Each sample

consisted of a row containing 114 input variables, including the

time for reaching the target Filtrate Mass, and one output

variable which is the Filtrate Mass.

By using the proposed model, I demonstrated that with

training sample of 3482 our model MSE is equal to 2.81284e-3

(very close to zero) and the correlation (R) is equal to 0.99999

(very strong, almost equal to 1). This is without the need to

retrain the network and with only 1000 epochs for training

validation and testing. Our validation sample size was 746 with a

MSE equal to 3.40612e-3 (also very close to zero) and the

correlation still 0.999999. Our testing sample size was 746 with

the MSE equal 2.49244e-3 and R is still 0.999999.

The first stage for getting the model for this solution is to

organize the data as a multidimensional array where the input

variables are the known parameters of the compound including

the time series of previously collected filtrate mass empirical

data.

Many Models were tried but the model with the best MSE and

R values was the model in which the complete PSD was inserted

as variables. I decided to use the PSD particle size as a variable

name and the volume in percent as the value for the variable and

include it in the input array to the neural network. The output

array of the neural network consisted of the empirical data of the

filtrate mass over time. This model will work for n-modal

compounds since all the information from the PSD is already

taken into consideration with the model.

This model can be implemented in many ways. It could be

made into a smart phone application using Java or the like, a

computer application GUI or simply run from inside the

Matlab® environment which was the one used for developing this

model.

IndexTerms—nanoparticles, nanocompounds, PSD, filtration,

filtrate, solution, multi-modal, volume, time, neural networks,

model, segregation.

I. INTRODUCTION

Nanomaterials and Nanoparticles are becoming part of

everyday life in a broad spectrum of fields and applications in

chemical industry, electronics, energy, bioindustry and medical

technology, just to name a few. A Nanoparticle is defined as a

nano-object with all three dimensions in the size range from 1

to 100 nano meters [1].

Numerous studies and analyses are trying to address the

processing of Nanoparticles and nanocompounds as the

technology tends to be a vital part of most known technologies

to date. One of the fields with utmost importance is the

development of separation processes, but very little

contributions have been made to the studies of membrane

filtration of nanoparticle suspensions [2].

The mechanisms and methods for filtration of

Nanomaterials and Nanoparticles are difficult because their

behavior is not fully understood. There is also a strong

probability that these particles do not agglomerate on collision

and their mean thermal velocity surpasses their capture velocity

[3].

The method presented in this paper solves this problem

algorithmically for any type of filter topology. Only the filter

and nano-compound solution characteristics are needed to

determine the volume of filtrate versus time.

II. SOLUTIION DETAILS

The model preprocessing includes the organization of the

known data and empirical data for the compound. This model

is strongly dependent of the compound PSD since all of the

PSD particle sizes and volumetric percentages are fed to the

network as variables. The elegancy of this model is the use of

individual particle size as variables and the % volume in the

PSD as the value for the variable. This makes the model more

robust since the whole PSD (independent of particle size) is

included in the model.

The model consists of an input (will depend on the total

number of particle sizes in the PSD) that is fed into a neural

network with 10 hidden layers and one output layer plus an

output which consists of the Filtrate Mass variable. The

neural network topology is shown in Figure 1. This figure

shows an input of 114 since the parameter data plus the PSD

values added up to 114 variables.

Fig. 1: Neural Network Topology

III. INPUT ORGANIZATION

The input variables to be fed to the Neural Network were

organized into a single array of variable number columns and

variable number of rows. I called this array nn_input. This

array consists of all the known and simple parameters for the

compound. The variable names are the column labels for each

case in the following order:

1. Filter diameter

2. Filter area

3. Filtration temperature

4. Filtrate density

5. Viscosity n-butanol

6. Viscosity water

7. Volume fraction n-butanol (solids free)

8. Volume fraction water (solids free)

9. Viscosity saturated solution

10. Mass of dry cake from filtration

11. Solvent loss on drying of wet cake

12. Filtration pressure

13. Time(s)

14. PSD Particle Size 1 (um)

15. PSD Particle Size 2 (um)

16. .

17. .

18. .M. PSD Particle Size N (um)

Please note that the nn_input array is a variable size array

of size M Columns and N rows (number of data points to be

fed into the neural network) since it will depend on the total

number of particle sizes in the PSD and the number of samples

in our empirical or known data. Also note that the values for

PSD Particle Size 1 (um) to PSD Particle Size N (um) columns

are the Volume (%) in the PSD.

Other known variables could be included in the nn_input

array if they are known would help on improving the

performance of the network.

IV. THE OUTPUT VARIABLE

The output variable is as simple as that is an array of 1

column by M rows containing the Filtrate Mass (g) variable

at specific times.

V. NEURAL NETWORK PERFORMANCE

The proposed model was tested with the empirical data

from two types of filter examples. Several tools were used

but the one found most suitable for data manipulation and

neural network implementation was Matlab® Release

2012b using the Neural Network Toolbox. A portion of the

data was used as training data (70 %), 15% of the data was

used for validation and the other 15% of the data was used

for testing the network. The nn_input array consisted of

114 variables (columns) and 4974 samples (rows). Figure 2

shows the percentages and actual number of samples for

filter one data. This example was tested from 0 time to the

Maximum time provided which was 2626 seconds.

Fig. 2. Percentages and number of samples for Training

Validation and Testing of the Neural Network for Example 1

Figure 3 is the explanation of the three kinds of samples

that were used in the neural network training, evaluation

and testing. The samples were selected randomly for each

kind of samples

Fig.3. Explanation of the Kind of Samples for Performance

Measurement

 After the input (nn_input) and output (nn-output) data

was organized. This information was fed to the neural

network. I included the Matlab® 2012b script for finding

the MSE and correlation between the inputs and outputs for

Training, Validation and Testing.

The following is the Matlab® script. If the reader wants to

evaluate the network with their own data, the data

(nn_input and nn_output) shall be in the Matlab®

workspace already and the following code can be copied

and pasted into a new Matlab® script and run it. You must

be aware that you must have the Neural Network Toolbox

installed. I had to develop a tool to organize the data into

the nn_input and nn_output from the empirical data taken at

the laboratory. You must do the same with your own data.

VI. MATLAB® SCRIPT

This section describes the Matlab® code for

Replicating the experiment with user data:

%Solve an Input-Output Fitting problem with a Neural

Network

% This script assumes these variables are defined:

%

% nn_input - input data.

% nn_output - target data.

inputs = nn_input';

targets = nn_output';

% Create a Fitting Network

hiddenLayerSize = 10;

net = fitnet(hiddenLayerSize);

% Choose Input and Output Pre/Post-Processing Functions

% For a list of all processing functions type: help nnprocess

net.inputs{1}.processFcns =

{'removeconstantrows','mapminmax'};

net.outputs{2}.processFcns =

{'removeconstantrows','mapminmax'};

% Setup Division of Data for Training, Validation, Testing

% For a list of all data division functions type: help

nndivide

net.divideFcn = 'dividerand'; % Divide data randomly

net.divideMode = 'sample'; % Divide up every sample

net.divideParam.trainRatio = 70/100;

net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

% For help on training function 'trainlm' type: help trainlm

% For a list of all training functions type: help nntrain

net.trainFcn = 'trainlm'; % Levenberg-Marquardt

% Choose a Performance Function

% For a list of all performance functions type: help

nnperformance

net.performFcn = 'mse'; % Mean squared error

% Choose Plot Functions

% For a list of all plot functions type: help nnplot

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...

 'plotregression', 'plotfit'};

% Train the Network

[net,tr] = train(net,inputs,targets);

% Test the Network

outputs = net(inputs);

errors = gsubtract(targets,outputs);

performance = perform(net,targets,outputs)

% Recalculate Training, Validation and Test Performance

trainTargets = targets .* tr.trainMask{1};

valTargets = targets .* tr.valMask{1};

testTargets = targets .* tr.testMask{1};

trainPerformance = perform(net,trainTargets,outputs)

valPerformance = perform(net,valTargets,outputs)

testPerformance = perform(net,testTargets,outputs)

% View the Network

view(net)

% Plots

% Uncomment these lines to enable various plots.

%figure, plotperform(tr)

%figure, plottrainstate(tr)

%figure, plotfit(net,inputs,targets)

%figure, plotregression(targets,outputs)

%figure, ploterrhist(errors)

VII. NEURAL NETWORK PERFORMANCE

I included some of the plots from my multiple runs in the

following sections. Many trials were performed to optimize

the network for better performance by adding more neurons,

more layers and varying the testing validation and training

sample sizes. But it turned out that 1000 neuron network and a

10 neuron network will have almost the same performance

while the 10 neuron network will have a solution within a

reasonable time frame (around 1 minute with almost 5000 rows

and 115 variables). So I decided to present the solution with a

10 neuron for this reason. Changing the sample size gave me

almost the same performance but the optimum levels are the

ones presented in this solution.

This neural network was run for 1000 epochs. This section

includes the charts for performance at 22 epochs and 1000

epochs and shows a very fast network convergence into the

final values in a very short time. The network convergence is

very close to the final value during the first ten iterations while

the maximum performance is achieved very close to the four

hundredth iteration.

Fig. 4. Validation Performance at epoch 22

A. Prediction Error

The error histogram presented in the next figure shows that

the error for the training, validation and test was between

4.02% and 4.9% which is an acceptable error.

Fig. 5. Validation Performance at epoch 1000

B. Regression Plot

The following plots show a regression plot for the training,

validation and test for output vs. target. There is another plot

for the combined correlations for validation, training and test

sets showing n almost perfect correlation between the outputs

of the network vs. the target value of the Filtrate Mass variable.

VIII. CONCLUSIONS

A novel predictive model for accurately determining filtrate mass

versus time was developed. The solution is based on training a

neural network consisting of ten hidden layers using the Levenberg-

Marcquard back propagation algorithm to recognize the correlation

between the input variables, including the filtration time, and the

filtrate mass.

The Network was trained with 3482 random samples, validated

with 746 random samples and tested with 746 random samples from

empirical data for two different types of filter topologies.

Fig. 6. Error Histogram with 20 Bins

The first stage for getting the model for this solution is to organize

the data as a multidimensional array where the input variables are the

known parameters of the compound including the time series of

previously collected filtrate mass empirical data.

This Model is proven to work with an estimated error of about

4.02% and 4.9% with a total sample size of 4974. Each sample

consisted of a row containing 114 input variables, including the time

for reaching the target Filtrate Mass, and one output variable which is

the Filtrate Mass.

Fig. 7. Regression Analysis Results for Training and Validation

The Network was trained with 3482 random samples and validated

with 746 random samples and tested with 746 random samples from

empirical data for two different types of filter topologies.

This model demonstrated that with training sample of 3482 our

model MSE is equal to 2.81284e-3(very close to zero) and the

correlation (R) is equal to 0.99999(very strong, almost equal to 1).

This is without the need to retrain the network and with only 1000

epochs for training validation and testing. Our validation sample size

was 746 with a MSE equal to 3.40612e-3 (also very close to zero)

and the correlation still 0.999999. Our testing sample size was 746

with the MSE equal 2.49244e-3 and R is still 0.999999. All this data

can be seen graphically in Figures 6 (error histogram) and 7

(regression analysis), while the demonstration of a very fast

convergence to the final values can be seen in figures 4 and 5.

The first stage for getting the model for this solution is to organize

the data as a multidimensional array where the input variables are the

known parameters of the compound including the time series of

previously collected filtrate mass empirical data.

ACKNOWLEDGMENT

I would like to thank Mr. Patrick Calella for his support in the
verification of this model.

This project was funded by Grant # 1301 form Icon Corporation
Puerto Rico.

REFERENCES

[1] ISO/TS. Nanotechnologies—terminology and definitions for

nano-objects—nanoparticle, nanofibre and nanoplate. Geneva,

Switzerland: International Standards Organization; 2009

[2] Yasuhito Mukai and Aya Nishio, Yasuhito Mukai and Aya

Nishio,“Characteristics of Filter Cake Exfoliation in Upward

Ultrafiltration of Nanoparticle Suspensions”, Membranes 2011,

1, 59-69; doi:10.3390/

[3] Chan soo Kim, Li Bao, Kikuo Okuyama, Manabu Shimada and

Hitoshi Ninuma,”Filtration Efficiency of a fibrous Filter for

Nanoparticles”, Journal of Nanoparticle Research 92006) 8:

215-221.

